ELECTROMAGNETIC-FIELD CALCULATION FOR A
THERMAL UHF DETECTOR AT HIGH
TEMPERATURES. I
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Scattering characteristics have been determined from semiinfinite dielectric nonuniformity in a
waveguide,
The electrodynamic characteristics of waveguide nonuniformities at UHF are very important in various
applications [1, 2]. One can determine the fluctuating electromagnetic field at temperature-type transducers

by reference to simpler cases.

1. Symmetrical Nonuniformity in a Rectangular Guide: Formulation

A rectangular guide has a wave propagating from the side z <0, which is of Hp, type. This encounters a
semiinfinite layered insulator, which results in a system of diffracted waves, whose amplitudes have fo he de-
termined. We envisage the case where the insulating plate of dielectric constant ¢, is placed symmetrically
with respect to the axis of the waveguide (Fig. 1a). Then the symmetry of the structure and of the exciting field
allow us to divide the problem into the two separate sections, in accordance with the value of p (even or odd).

If piseven (p=2I,1=1, 2, 3,...), an electrical wall placed in the plane x = 0 produces no change in the field
pattern. The problem therefore reduces to one previously examined [3]. If pis odd (p =2I1-1,1=1, 2, 3,...},
the problem is equivalent to that of the structure of Fig, 1b. In that case, a magnetic wall is placed in the plane
x =0.

Consider the case of p odd. The solution is sought by means of a modified residue technique, for which
purpose we use an auxiliary structure, whose geometry is the same as that of the nonuniformity, but which has
an infinitely thin ideally conducting metal strip of width A at the boundary (Fig. 1b). If A — 0, we get the initial
geometry of the optical obstacle.

In regions A, B, C, andD, we determine the Ey component on the electric field in the form
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Fig. 1. Semiinfinite laminated dielectric inhomo-
geneity in a rectangular waveguide: a) test struc-
ture; b) structure with additional geometry.
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We link up the tangential components of the electromagnetic field at the boundaries z =0 and z = A, eliminate
the coefficients By, §mz, Cmp» and aml, eliminate the coefficients, and then put o — 0 to get
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2. Symmetrical Nonuniformity in a Cylindrical

Waveguide: Formulation

The cylindrical waveguide has a wave propagating from z < 0, which is of Hyp type, and which encounters
an obstacle in the form of semiinfinite piecewise-inhomogeneous dielectric inserts (Fig. 2a). We have to de-
termine the field arising by scattering of the incident wave at this nonuniformity.

The above method is employed. We introduce an auxiliary structure, which is an infinitely thin ideally
conducting ring of width A and radius b. This ring is coaxial with the waveguide (Fig. 2b). The component Ey
of the electromagnetic field is put as
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We link up the field components at the boundaries of the characteristic irregular regions and proceed as in the
first case to get
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Fig. 2. Semiinfinite piecewise-inhomogeneous
dielectric in a cylindrical waveguide: a) test
structure; b) structure with additional geom-~
etry.
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3. Solution of the System of Linear Algebraic Equations

Systems (1) and (3) are similar apart from the symbols used, so they can be solved for either case.

The following cases are of particular practical importance: a dielectric step lies at the wall of the wave-
guide {g; = 1) or the nonuniformity does not touch the wall (g, = 1); we consider one of these. Let e, =1 (the
solution for ¢, = 1 is analogous). If €, = 1, then py,e becomes zero, while 1, = 1.

Consider the following four integrals over the closed contour C:
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where the function f(w) satisfies the following conditions.

I. f(w) is an analytic function of the complex variable everywhere apart from the points w = hypg, w =
—hmd, (m =1, 2,3,...), andw=-hj,, where it has simple poles.

11. £(w) has simple zeros at the points w = +hge,q =1, 2,3, ...
III. Resf(-hy,) = Ap .

1230



Iv. f(w) satisfies the following equations forq =1, 2, 3, ....
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VI. f(w) =0 (w™ ) for |w|—~ «, where n>1 is determined from the behavior of the field at the edge. For
an insulator whose edge is represented by a right angle in the cross section, we have [3]
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We reduce the integrals of (5) to sums of residues to get
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4, Construction of f(w)

The conditions formulated above define f(w) neatly;the conditions that define the disposition of the zeros
and poles of f(w) are met if the function is put in the general form
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where R(w) is an integer function of the variable w that does not equal zero; {Q; .} and {Qp},} are sequences of
displaced zeros which have to be determined. However, the f{w) of the form of (8) is not particularly useful
here because there are two modified regions in the geometry (auxiliary structure}, so the last two products in
the numerator in (8) are best replaced by the polynomial
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which incorporates the perturbation due to the displacement of the zeros from the points { I‘mb} and {— T'mb} and
{me} and {—me} respectlvely

We substitute for f(w) into the equations that express properties IV and V of f(w) and thus reduce the
problem to definition of the sequence of displaced zeros to that of an infinite system of equations for the un~
known coefficients Up, and Vi, whose asymptotic behavior for m large can be determined. We put w = 2"/
for m — « and use condition VI to get
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Then (9) for m large becomes as follows:
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where U and V are unknown coefficients: we substitute (10) into (8) and then use conditions IV and V to get a
system of M = My + My linear equations for the unknowns {Um}» {VmJ,U and V

We determine the magnitude of the perturbing coefficients and satisfy the normalization condition HI to
get the final expression for f(w); this can be used to derive the scattering matrices {Ry} and {Tyn} from (7).
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